

Northern Beaches Secondary College Manly Selective Campus

2014 HSC Trial Examination

Mathematics Extension 1

General Instructions

- Reading time 5 minutes.
- Working time 2 hours.
- Write using blue or black pen.
- Board-approved calculators and templates may be used.
- All necessary working should be shown in every question.
- Multiple choice questions are to be completed on the special answer page.

Total marks – 70

• Attempt Questions 1-14

Multiple choice section

Answer each of the following ten (10) questions on the special answer sheet provided.

Q1. $\frac{2\tan\theta}{1+\tan^2\theta}$ is equivalent to?

- A) $\cos 2\theta$
- B) $\sin 2\theta$
- C) $\tan 2\theta$
- D) $\cot 2\theta$
- Q2. The remainder theorem when $P(x) = x^3 2x^2 4x + 7$ is divided by 2x + 3 is:
 - A) 4 B) $\frac{41}{8}$ C) $-\frac{1}{8}$ D) -26
- Q3. The point P(2, 2) divides the interval joining A(-2, -4) and $B(x_2, y_2)$ in the ratio 2:1. The coordinates of B are?
 - A) (4, 5)
 - B) (6, 8)
 - C) (0, -1)
 - D) (10, 14)

Q4. The term independent of x in the expansion $\left(x+\frac{3}{x}\right)^4$ is?

- A) 3
- B) 6
- C) 18
- D) 54

Q5. A particle is moving along a straight line. The displacement of the particle from a fixed point O is given by x. The graphs below show acceleration against displacement.

Which of the graphs below best represents a particle moving in simple harmonic motion?

Q6. The definite integral $\int_{e}^{e^2} \frac{2}{x(\log_e x)^2} dx$ is evaluated using the substitution $u = \log_e x$.

The value of the integral is?

A)
$$2\left(\frac{1}{e} - \frac{1}{e^2}\right)$$

B) $2\left(\frac{1}{e^2} - \frac{1}{e}\right)$
C) -1
D) 1

Q7. The function shown in the diagram below has the equation $y = A \sin^{-1} Bx$. Which of the following is true?

(D)
$$A = \frac{2}{\pi}, B = 2$$

Q8. Three English books, four Mathematics books and five Science books are randomly placed along a bookshelf. What is the probability that the Mathematics books are all next to each other?

A)	$\frac{1}{3!5!}$
B)	$\frac{4!9!}{12!}$
C)	$\frac{4!3!5!}{12!}$
D)	$\frac{4!}{9!}$

Q9. *A*, *B*, *C* and *D* are points on a circle. The line *l* is tangent to the circle at *C*. $\angle ACE = \theta$.

What is $\angle ADC$ in terms of θ ?

- A) $90^{\circ} \theta$
- B) $180^\circ \theta$
- C) $180^\circ 2\theta$
- D) θ

Q10. What is the indefinite integral for $\int (\cos^2 x + \sec^2 x) dx$?

A)
$$\frac{1}{2}x + \frac{1}{4}\sin 2x + \frac{1}{2}\tan x + c$$

B)
$$\frac{1}{2}x - \frac{1}{4}\sin 2x + \frac{1}{2}\tan x + c$$

C) $\frac{1}{2}x + \frac{1}{4}\sin 2x + \tan x + c$

D)
$$\frac{1}{2}x - \frac{1}{4}\sin 2x + \tan x + c$$

End of Multiple Choice

Free response questions – answer each question in a separate Booklet

Question 11: Start a new Booklet

a) Solve
$$\left(\frac{x+3}{x^2-1}\right) \le 0$$
 2

 A container ship brings a total of 1200 cars into Australia. Of these cars, three hundred have defective brakes.

A total of five hundred cars are unloaded at Sydney.

Find an expression for the probability that one hundred of the cars unloaded at Sydney have defective brakes.

(NOTE: You don't need to simplify or evaluate the expression).

- c) How many times must a die be rolled so that the probability of at least one six exceeds 0.5?
- d) Line A is defined by the equation y = 2x + 1. Line B is defined by the equation y = mx + b

If the acute angle between the two is 45 degrees, what are the possible values of *m*?

2

2

2

15 Marks

Question 11: continued on next page

Question11: continued.

e) In the diagram above the point R is the fourth vertex of the rectangle *POQR*. The points *P* and *Q* move such that $\angle POQ = 90^{\circ}$.

(i) Show that
$$st = -4$$
 1

- (ii) Find the locus of the point R
- f) Find the general solution of the equation:

$$\sin\theta\cos\theta = \frac{1}{2}$$

g) The diagram shown below shows a circle and *AB* is a chord of length 6 *cm*. The tangent to the circle at *P* meets *AB* produced at *X*. $PX = 4 \ cm$. Find the length of *BX*.

2

2

2

Question 12: Start a new Booklet

$$f(x) = \log_e x - \frac{1}{x}$$

lies between x = 1 and x = 2.

(ii) Use one application of Newton's Method with an initial approximation of x = 1.5 to obtain an improved estimate to the solution of the equation:

$$\log_e x - \frac{1}{x} = 0.$$

(State your answer to one decimal place.)

b) The rate of change of the temperature *T* of a cool item placed in a hot environment is determined by the equation.

$$\frac{dT}{dt} = k(S - T)$$

where k is a constant and T is the temperature of the object, and S is the temperature of the environment.

(i) Show that $T = S - Ae^{-kt}$ is a solution to the differential equation:

$$\frac{dT}{dt} = k(S-T). 1$$

Jamie is cooking a large roast in an oven set to 160°C. The roast will be cooked when the thermometer shows that the temperature of the centre of the roast is 150°C. When Jamie started cooking, the temperature of the centre of the roast was 4°C and 30 minutes later it was 60°C.

(ii) How long will it take for the roast to be cooked?

Question 12 continued on next page

1

15marks

2

3

Question 12 continued

c) (i) Show that
$$\frac{1}{(n+1)!} - \frac{n+1}{(n+2)!} = \frac{1}{(n+2)!}$$

(ii) Use mathematical induction to show that, for all integers $n \ge 1$,

$$\frac{1}{2!} + \frac{2}{3!} + \frac{3}{4!} + \dots + \frac{n}{(n+1)!} = 1 - \frac{1}{(n+1)!}.$$
3

3

d) Given the function
$$f(x) = \frac{x^2 - 1}{x^3 - 8}$$

(i)	State the vertical asymptote.	1
(ii)	Sketch the graph of the function. Clearly show on your diagram	

the x – intercepts.

(Your diagram should be one third of a page in size)

Question 13: Start a new Booklet

a) Find
$$\int e^{x + e^x} dx$$
 using the substitution $u = e^x$ 3

b) A particle is moving in a straight line. At time *t* seconds it has displacement *x* metres from a fixed point *O* on the line. The velocity is given by

$$\dot{x} = -\frac{1}{8}x^3$$

The acceleration of the particle is given by \ddot{x} . The particle is initially 2 metres to the right of *O*.

(i) Show that
$$\ddot{x} = \frac{3}{64}x^5$$
 2

- (ii) Find an expression for x in terms of t
- c) The letters of the word **INTEGRAL** are arranged in a row. Calculate the probability that there are three letters between the letters "**N**' and "**T**".

Question 13 continued on next page

3

3

15 marks

Question 13 continued

d) During the medieval wars, the enemy wanted to attack a fortress with a 5 metre opening along a front wall. The strategy was to stand at the point P, on a line 8 metres from the opening and perpendicular to the wall, as per the diagram. The archer stands *x* metres away from the wall, thus giving an angle of vision, α, through which to fire arrows from a cross-bow.

(i) Show that the angle of vision α is given by

$$\alpha = \tan^{-1}\left(\frac{13}{x}\right) - \tan^{-1}\left(\frac{8}{x}\right)$$

(ii) Determine the distance x which gives the maximum angle of vision α . 3

Question 14: Start a new Booklet

15 marks

1

2

a) Let α , β , γ be the roots of $P(x) = 2x^3 - 5x^2 + 3x - 5$. Find the value of $\frac{1}{\alpha^2} + \frac{1}{\beta^2} + \frac{1}{\gamma^2}$ 3

b) Let
$$(3+2x)^{20} = \sum_{r=0}^{20} a_r x^r$$

- (i) Write down an expression for a_r 1(ii) Show that $\frac{a_{r+1}}{a_r} = \frac{40 2r}{3r + 3}$ 2
- (iii) Find the value of r which produces the greatest coefficient in the expansion of $(3 + 2x)^{20}$
- c) A particle is moving in a straight line in simple harmonic motion. At time *t* it has displacement *x* metres from a fixed point *O* on the line where

$$x = (\cos t + \sin t)^2$$

At time *t*, the velocity of the particle is $\dot{x} ms^{-1}$ and the acceleration is $\ddot{x} ms^{-2}$

- (i) Show that $\ddot{x} = -4(x-1)$ 2
- (ii) Find the extreme positions of the particle during its motion.

Question 14 continued on next page.

Question 14continued

d) (i) Show that:

$$(1-x)^n \left(1+\frac{1}{x}\right)^n = \left(\frac{1-x^2}{x}\right)^n$$

(ii) By considering the expansion of $(1-x)^n \left(1+\frac{1}{x}\right)^n$ or otherwise, express

$$\binom{n}{2}\binom{n}{0} - \binom{n}{3}\binom{n}{1} + \dots + (-1)^n \binom{n}{n}\binom{n}{n-2}$$

in simplest form.

END OF EXAMINATION PAPER

3

This page has been left blank.

STANDARD INTEGRALS

NOTE : $\ln x = \log_e x$, x > 0

Q1	Let $t = \tan \theta$ then $\frac{2 \tan \theta}{1 + \tan^2 \theta} = \frac{2t}{1 + t^2}$ $= \sin 2\theta$	В
Q2	$x = -\frac{3}{2}$ $\left(-\frac{3}{2}\right)^{3} - 2 \times \left(-\frac{3}{2}\right)^{2} - 4 \times \left(-\frac{3}{2}\right) + 7 = \frac{41}{8}$	В
Q3	$\frac{1(-2) + 2x}{2+1} = 2 \Longrightarrow x = 4$ $\frac{1(-4) + 2y}{2+1} = 2 \Longrightarrow y = 5$	А
Q4	$T_{k+1} = {}^{4}C_{k}x^{4-k}\left(\frac{3}{x}\right)^{k}$ = ${}^{4}C_{k}x^{4-k}\left(3^{k}x^{-k}\right)$ = ${}^{4}C_{k}3^{k}x^{4-2k}$ independent of $x \Longrightarrow 4-2k = 0$ k = 2 the term is ${}^{4}C_{2} \times 3^{2} = 54$	D
Q5	For simple harmonic motion $x = -n^2 x$	А

Q6	$\int_{e}^{e^{2}} \frac{2}{x(\log_{e} x)^{2}} dx = 2 \int_{e}^{e^{2}} \frac{1}{(\log_{e} x)^{2}} \times \frac{1}{x} dx$ $= 2 \int_{1}^{2} \frac{1}{u^{2}} du$ $= 2 \int_{1}^{2} u^{-2} du$ $= 2 \left[\frac{u^{-1}}{-1} \right]_{1}^{2}$ $= -2 \left[\frac{1}{u} \right]_{1}^{2}$ $= -2 \left[\frac{1}{u} \right]_{1}^{2}$ $= 1$	D
Q7	$A = \frac{-2}{\pi}$ Domain is $D: -1 \le Bx \le 1$ $-\frac{1}{B} \le x \le \frac{1}{B}$ $\therefore \frac{1}{B} = 2$ $B = \frac{1}{2}$	С
Q8	$\frac{4!9!}{12!}$	В
Q9	$180^{\circ} - \theta$	В
Q10	$\frac{1}{2}x + \frac{1}{4}\sin 2x + \tan x + c$	С

	$p_6 = \frac{1}{6}$ $q_{not6} = \frac{5}{6}$	
Q11-c	$\therefore p_{no 6's} = \left(\frac{5}{6}\right)^n$ $\therefore 1 - \left(\frac{5}{6}\right)^n > 0.5$ $0.5 > \left(\frac{5}{6}\right)^n$ $\ln(0.5) > n \ln\left(\frac{5}{6}\right)$ $\frac{\ln(0.5)}{\ln\left(\frac{5}{6}\right)} < n$ $\frac{1n\left(\frac{5}{6}\right)}{3.8 < x}$ $\therefore \qquad n = 4$ Therefore 4 throws of dice required.	2 marks: correct solution 1 mark: $1 - \left(\frac{5}{6}\right)^n > 0.5$ Or bald correct answer Note: many students failed to recognise that $\ln\left(\frac{5}{6}\right)$ is negative requiring inequality sign to be reversed
Q11-d	$y = 2x + 1 \qquad m_1 = 2 \qquad m_2 = m$ $\tan \theta = \left \frac{m_1 - m_2}{1 + m_1 m_2} \right $ $1 = \left \frac{2 - m}{1 + 2m} \right $ $-1 = \frac{2 - m}{1 + 2m} \qquad 1 = \frac{2 - m}{1 + 2m}$ $-2m - 1 = 2 - m \qquad 1 + 2m = 2 - m$ $m = -3 \qquad m = \frac{1}{3}$	2 marks: correct solution 1 mark: correct formula

Q11-e-i	$st = -4$ $m_{OQ} = \frac{as^2}{2as} = \frac{s}{2}$ $m_{OP} = \frac{at^2}{2at} = \frac{t}{2}$ $m_{OQ} \times m_{OP} = -1$ $\frac{s}{2} \times \frac{t}{2} = -1$ $\therefore \qquad st = -4$	1 mark: correct demonstration
Q11-e-ii	$Q(2as, as^{2}) P(2at, at^{2})$ As shape is a rectangle $R = (2as + 2at, as^{2} + at^{2})$ $x = 2a(s + t) \qquad y = a(s^{2} + t^{2})$ $\frac{x}{2a} = (s + t)$ $(s + t)^{2} = s^{2} + 2st + t^{2}$ $(s + t)^{2} - 2st = s^{2} + t^{2}$ $\frac{x^{2}}{4a^{2}} - 2(-4) = s^{2} + t^{2}$ $y = a\left(\frac{x^{2}}{4a^{2}} + 8\right)$ $y = \frac{x^{2}}{4a} + 8a$ $4ay = x^{2} + 32a^{2}$ $x^{2} = 4a(y - 8a)$	2 marks: correct demonstration 1 mark: applying $(s + t)^2 = s^2 + 2st + t^2$ Note: too many students were unable to write down coords of R, but wasted time deriving them
Q11-f	$\sin\theta\cos\theta = \frac{1}{2}$ $\therefore 2\sin\theta\cos\theta = 1$ $\sin 2\theta = 1$ $2\theta = \frac{\pi}{2} + 2n\pi$ $\theta = \frac{\pi}{4} + n\pi$	2 marks :correct solution 1 mark: correct base value

Q11-g	XB. $AX = XP^2$ (6 + x)x = 16 $x^2 + 6x - 16 = 0$ (x + 8)(x - 2) = 0	2 marks: correct solution 1 mark: correct equation (6 + x) x = 16
	x = -8 or 2 $\therefore \qquad x = 2 \text{ distance}$	

Q12

Q12-a-i	$f(x) = \log_e x - \frac{1}{x}$ $f(1) = \log_e 1 - \frac{1}{x} = 0 - 1 = neg$	1 mark – correct explanation based on
	$f(2) = \log_e 2 - \frac{1}{2} = 0.19 = pos$ Therefore at least one root must lie between 1 and 2	correct values calculated.
	as graph moves from negative to positive.	
Q12-a-i	$f(x) = \log_{e} x - \frac{1}{x}$ $f'(x) = \frac{1}{x} + \frac{1}{x^{2}} = \frac{x+1}{x^{2}}$ $a_{2} = a_{1} - \frac{f(x)}{f'(x)}$ $= 1 \cdot 5 - \frac{\log_{e} 1 \cdot 5 - \frac{1}{1 \cdot 5}}{\frac{1 \cdot 5 + 1}{(1 \cdot 5)^{2}}}$ $= 1 \cdot 735$	2 marks – correct solution 1 mark – correct substitution into correct formula
Q12b-i	Version 1 $T = S - Ae^{-kt}$ $\frac{dT}{dt} = kAe^{-kt}$ $= kS - kS + kAe^{-kt}$ $= -k(-S + S - Ae^{-kt})$ $= -k(-S + T)$ $= k(S - T)$ $= k(S - T)$ $T = S - Ae^{-kt}$ $\therefore Ae^{-kt} = S - T$ (1) $\frac{dT}{dt} = kAe^{-kt}$ $= k(S - T)$ $= k(S - T)$ $from (1)$	1 mark – fully explained in explanation of substitution.

	$T = S - Ae^{-kt}$	
	$at t = 0 T = 4$ $4 = 160 - Ae^{0}$ $A = 156$	
q12b-ii	$at t = 30 \qquad T = 60$ $60 = 160 - 156e^{-30k} \qquad \textcircled{0}$ $e^{-30k} = \frac{100}{156}$ $-30k = \ln\frac{100}{156}$ $k = \ln\frac{100}{156} \div -30 = 0.014823$ $150 = 160 - 156e^{-kt}$ $e^{-kt} = \frac{10}{156}$ $t = \ln\frac{10}{156} \div -k$	3 marks – correct solution 2 marks – correct value for k 1 mark – correct to line (1)
	$= \ln \frac{10}{156} \div \left(-\ln \frac{100}{156} \div -30 \right)$ = 185min 20sec	
Q12-c	$\frac{1}{(n+1)!} - \frac{n+1}{(n+2)!}$ $= \frac{1}{(n+1)!} - \frac{n+1}{(n+2)(n+1)!}$ $= \frac{n+2}{(n+2)(n+1)!} - \frac{n+1}{(n+2)!}$ $= \frac{(n+2) - (n+1)}{(n+2)!}$ $= \frac{1}{(n+2)!}$	1 mark – correct solution

Q12c-ii	$\frac{1}{2!} + \frac{2}{3!} + \frac{3}{4!} + \dots + \frac{n}{(n+1)!} = 1 - \frac{1}{(n+1)!}$ For $n = 1$ $LHS = \frac{1}{(1+1)!} = \frac{1}{2}$ $RHS = 1 - \frac{1}{(1+1)!} = \frac{1}{2}$	
Q12c-ii	$\frac{1}{2!} + \frac{2}{3!} + \frac{3}{4!} + \dots + \frac{n}{(n+1)!} = 1 - \frac{1}{(n+1)!}$ Assume true for $n = k$ ie. $\frac{1}{2!} + \frac{2}{3!} + \frac{3}{4!} + \dots + \frac{k}{(k+1)!} = 1 - \frac{1}{(k+1)!}$ RTP true for $n = k + 1$ LHS $= \frac{1}{2!} + \frac{2}{3!} + \frac{3}{4!} + \dots + \frac{k}{(k+1)!} + \frac{k+1}{((k+1)+1)!}$ $= 1 - \frac{1}{(k+1)!} + \frac{k+1}{(k+2)!}$ $= 1 - \left\{\frac{1}{(k+1)!} - \frac{k+1}{(k+2)!}\right\}$ $= 1 - \frac{1}{(k+2)!}$ = RHS Therefore proved true for all n by process of mathematical induction.	3 marks – correct solution clearly showing use of assumption and or substitution or matching algebra 2 marks – solution partially showing use of assumption and or substitution or matching algebra 1 mark – correct for n = 1
Q12d-i	$f(x) = \frac{x^2 - 1}{x^3 - 8}$ $= \frac{x^2 - 1}{(x - 2)(x^2 + x + 4)}$ $\therefore x = 2 \text{ is vertical asymptote}$	$1 \text{ mark} - \text{correct}$ solution $x \neq 2 \text{ not accepted.}$
Q12d-ii	x Intercept (-1,0) Vertical Asymptote x = 2	3 marks - correct shape - correct asymptotes - correct <i>x</i> intercepts

Q13-a	$\int e^{x + e^{x}} dx$ $u = e^{x} \qquad du = e^{x} dx$ $= \int e^{x} \times e^{e^{x}} dx$ $= \int e^{u} du$ $= e^{u} + C$ $= e^{e^{x}} + C$	3 marks – correct solution 2 marks – for correct expression $\int e^{u} du = e^{u} + C$ 1 mark for $e^{x + e^{x}} = e^{x} \cdot e^{e^{x}}$
Q13b-i	$\dot{x} = -\frac{1}{8}x^{3} = v$ $\therefore \frac{1}{2}v^{2} = -\frac{1}{128}x^{6}$ $\ddot{x} = \frac{d(\frac{1}{2}v^{2})}{dx} = \frac{6}{128}x^{5}$ $= \frac{3}{64}x^{5}$	2 marks for correct solution. 1 mark for $\frac{1}{2}v^2 = \frac{1}{128}x^6$

Q13b-ii	$\dot{x} = -\frac{1}{8}x^{3}$ $\frac{dx}{dt} = -\frac{1}{8}x^{3}$ $\frac{dx}{dt} = -\frac{1}{8}x^{3}$ $\frac{dt}{dt} = -\frac{1}{8}x^{3}$ $t = \int -8x^{-3}dx = \frac{-8x^{-2}}{-2}$ $t = \frac{4}{x^{2}} + C$ $at t = 0 \qquad x = 2$ $0 = \frac{4}{4} + C$ $\therefore C = -1$ $t = \frac{4}{x^{2}} - 1$ $t + 1 = \frac{4}{x^{2}}$ $x^{2} = \frac{4}{t+1}$ $x = \sqrt{\frac{4}{t+1}}$ Note: Positive answer only to agree original conditions	3 marks for correct solution 2 marks - $t = \frac{4}{x^2} + C$ and $C = -1$ - $t = \frac{4}{x^2} + C$ and correct primitive from incorrect value for C 1 mark - $t = \frac{4}{x^2}$
Q13c	INTEGRAL \overline{N} \overline{T} \overline{N} \overline{T} \overline{N} \overline{T} \overline{D} \overline{N} \overline{T} \overline{T} \overline{D} \overline{N} \overline{N} \overline{T} \overline{T} \overline{T} \overline{D} \overline{N} \overline{T} \overline{T} \overline{N} \overline{T} \overline{T} \overline{T} \overline{T} \overline{T} \overline{N} \overline{T}	3 marks – correct solution 2 marks – for <i>n</i> (<i>S</i>)=8! and any two correct of 4 or 2! or 6! 1 mark - 8! -any two of 4 or 2! or 6!

	R R R R R R R R R R R R R R R R R R R	
Q13-d	$\alpha = \tan^{-1}\left(\frac{13}{x}\right) - \tan^{-1}\left(\frac{8}{x}\right)$ $\alpha = \angle QPS - \angle QPR$ $\tan(\angle QPR) = \frac{8}{x} \qquad \tan(\angle QPS) = \frac{13}{x}$ $\angle QPR = \tan^{-1}\frac{8}{x} \angle QPS = \tan^{-1}\frac{13}{x}$ $\therefore \qquad \alpha = \tan^{-1}\left(\frac{13}{x}\right) - \tan^{-1}\left(\frac{8}{x}\right)$	1 mark for correct solution
Q13-d-ii	$\alpha = \tan^{-1}\left(\frac{13}{x}\right) - \tan^{-1}\left(\frac{8}{x}\right)$ $\frac{d\alpha}{dx} = -\frac{13}{x^2}\left(\frac{1}{1+\left(\frac{13}{x}\right)^2}\right) + \frac{8}{x^2}\left(\frac{1}{1+\left(\frac{8}{x}\right)^2}\right)$ $\therefore at \frac{d\alpha}{dx} = 0$ $\frac{13}{x^2}\left(\frac{1}{1+\left(\frac{13}{x}\right)^2}\right) = \frac{8}{x^2}\left(\frac{1}{1+\left(\frac{8}{x}\right)^2}\right)$ $\frac{8x^2}{x^2+64} = \frac{13x^2}{x^2+169}$ $8\left(x^2+169\right) = 13\left(x^2+64\right)$ $x^2 = \frac{520}{5}$ $x = \sqrt{104}$ Test for maximum $x = 10 \qquad \frac{d\alpha}{dx} = -\frac{13}{100}\left(\frac{1}{1+\left(\frac{13}{10}\right)^2}\right) + \frac{8}{100}\left(\frac{1}{1+\left(\frac{8}{10}\right)^2}\right) = 0.0004$ $x = 10 \cdot 2 \qquad \frac{d\alpha}{dx} = -0.000004$ Therefore change in gradient positive, zero to negative therefore maximum	3 marks – correct solution 2 marks - $x = \sqrt{104}$ 1 mark - correct for $\frac{d\alpha}{dx}$ - value of <i>x</i> correctly obtained from incorrect $\frac{d\alpha}{dx}$

Q14-a	$\begin{aligned} \alpha + \beta + \gamma &= -\frac{b}{a} = \frac{5}{2} \\ \alpha\beta + \alpha\gamma + \beta\gamma &= \frac{c}{a} = \frac{3}{2} \\ \alpha\beta\gamma &= -\frac{d}{a} = \frac{5}{2} \\ \frac{1}{\alpha^2} + \frac{1}{\beta^2} + \frac{1}{\gamma^2} &= \frac{\beta^2\gamma^2 + \alpha^2\gamma^2 + \alpha^2\beta^2}{\alpha^2\beta^2\gamma^2} \\ (\alpha\beta + \alpha\gamma + \beta\gamma)^2 \\ &= \alpha^2\beta^2 + \alpha^2\gamma^2 + \beta^2\gamma^2 + 2(\alpha^2\beta\gamma + \alpha\beta^2\gamma + \alpha\beta\gamma^2) \\ &= \alpha^2\beta^2 + \alpha^2\gamma^2 + \beta^2\gamma^2 + 2\alpha\beta\gamma(\alpha + \beta + \gamma) \\ \therefore \qquad \left(\frac{3}{2}\right)^2 &= \alpha^2\beta^2 + \alpha^2\gamma^2 + \beta^2\gamma^2 + 2 \times \frac{5}{2} \times \frac{5}{2} \\ &= \frac{9}{4} - \frac{25}{2} &= \alpha^2\beta^2 + \alpha^2\gamma^2 + \beta^2\gamma^2 \\ \frac{\beta^2\gamma^2 + \alpha^2\gamma^2 + \alpha^2\beta^2}{\alpha^2\beta^2\gamma^2} &= \left(-\frac{41}{4}\right) \div \frac{25}{4} &= -\frac{41}{25} \end{aligned}$	3 marks: correct solution 2 marks : partial correct with a least 2 values of ratios of coefficients correct with correct required expansion 1 mark: at least two ratios correct only Or 1 mark: correct required expansion only
	$(3 + 2x)^{20}$ $\therefore x^{r} term = {}^{20}\mathbf{C}_{r} 3^{20-r} . (2x)^{r}$ $a_{r} = {}^{20}\mathbf{C}_{r} 3^{20-r} . (2)^{r}$	1 mark: correct solution

	$a_r = {}^{20}\mathbf{C}_r 3^{20-r} . (2)^r$	
	$a_{r+1} = {}^{20}\mathbf{C}_{r+1} 3^{19-r} . (2)^{r+1}$	
	$\underline{a_{r+1}} = \frac{{}^{20}\mathbf{C}_{r+1}3^{19-r}.(2)^{r+1}}{}^{(2)}$	
	$a_r = {}^{20}\mathbf{C}_r 3^{20-r} . (2)^r$	2 marks: correct solution
	$=\frac{20!\times 3^{19-r} \cdot (2)^{r+1}}{(19-r)!(r+1)!} \times \frac{(20-r)!r!}{20!\times 3^{20-r} \cdot (2)^{r}}$	1 mark: partial correct with both terms correct
	$=\frac{2(20-r)}{3(r+1)}$	
	$-\frac{40-2r}{2}$	
	-3r+3	
	$\frac{40-2r}{3r+3} \le 1$	
	$40 - 2r \le 3r + 3$	
	$37 \leq 5r$	
	$7 \cdot 4 \leq r$	1 mark: correct solution
	\therefore $r = 8$	
	$r = 8$ ${}^{20}\mathbf{C}_8 3^{12} \times 2^8 = 1.714 \times 10^{13}$	
	$r = 7$ ${}^{20}\mathbf{C}_7 3^{13} \times 2^7 = 1.582 \times 10^{13}$	
	Test $r = 9$ ${}^{20}\mathbf{C}_9 3^{11} \times 2^9 = 1.523 \times 10^{13}$	
	$x = (\cos t + \sin t)^2 = \cos^2 t + 2\sin t \cos t + \sin^2 t$	
	$\therefore x = 1 + \sin 2t$	
14c-i		2 marks: correct solution
140 1	$\dot{x} = 2\cos 2t$	1 mark: correct expression for velocity
	$\ddot{x} = -4\sin 2t$	·
	$= -4(1 + \sin 2t - 1)$	
	= -4(x-1)	
	$x = 1 + \sin 2t$	
	$-1 \le \sin 2t \le 1$	∠ marks: correct solution
14c-ii	$0 \le 1 + \sin 2t \le 2$	1 mark: only one correct
	$0 \le x \le 2$	extreme
	therefore extremes of position are $x = 0$ and $x = 2$	

14 d -i	$(1-x)^{n} \left(1+\frac{1}{x}\right)^{n} = \left[(1-x)\left(1+\frac{1}{x}\right)\right]^{n}$ $= \left[1+\frac{1}{x}-x-1\right]^{n}$ $= \left(\frac{1}{x}-x\right)^{n}$	1 mark: correct solution
	$ = \left[\frac{1-x^2}{x}\right]^n $	

	Determine the coefficient of x^2 on both sides of the equation.	
	$RHS = (1-x)^n \left(1+\frac{1}{x}\right)^n$	
	$= \left[\sum_{k=0}^{n} (-1)^{k} {}^{n}\mathbf{C}_{k} x^{k}\right] \left[\sum_{k=0}^{n} {}^{n}\mathbf{C}_{k} x^{-k}\right]$	
	\therefore coefficient of x^2	
	$\binom{n}{2}\binom{n}{0} - \binom{n}{3}\binom{n}{1} + \dots + (-1)^n\binom{n}{n}\binom{n}{n-2}$	
	$LHS = \left(\frac{1-x^2}{r}\right)^n = \left(\frac{1}{r} - x\right)^n$	
	$= \sum_{k=1}^{n} (-1)^{k} {n \choose k} x^{-(n-k)} x^{k}$	3 marks : correct solution
	$\sum_{k=0}^{k} (k)^{k} (k)^{k}$	2 marks: partial
14d-ii	$= \sum_{k=0}^{n} (-1)^{k} {n \choose k} x^{2k-n}$	significant progress to equating
	\cdot coefficient of x^2 at	coefficients of squared term
	2k - n = 2	1 mark: one
	$k = 1 + \frac{n}{2}$	expression for the squared term correct
	If n is odd, then k is not an integer therefore cannot exist.	
	therefore	
	$\binom{n}{2}\binom{n}{0} - \binom{n}{3}\binom{n}{1} + \dots + (-1)^n \binom{n}{n}\binom{n}{n-2} = 0$	
	If <i>n</i> is even then $(-1)^{1+\frac{n}{2}} \binom{n}{1+\frac{n}{2}}$ is coefficient of x^2 therefore	
	$\binom{n}{2}\binom{n}{0} - \binom{n}{3}\binom{n}{1} + \dots + (-1)^n \binom{n}{n}\binom{n}{n-2} = (-1)^{1+\frac{n}{2}}\binom{n}{1+\frac{n}{2}}$	