

Northern Beaches Secondary College
 Manly Selective Campus

Mathematics Extension 1

General Instructions

- Reading time - 5 minutes.
- Working time -2 hours.
- Write using blue or black pen.
- Board-approved calculators and templates may be used.
- All necessary working should be shown in every question.
- Multiple choice questions are to be completed on the special answer page.

Total marks - 70

- Attempt Questions 1-14

Manly Selective Campus
 2014 HSC Mathematics Extension 1-Trial Examination

Multiple choice section

Answer each of the following ten (10) questions on the special answer sheet provided.

Q1. $\frac{2 \tan \theta}{1+\tan ^{2} \theta}$ is equivalent to?
A) $\cos 2 \theta$
B) $\sin 2 \theta$
C) $\tan 2 \theta$
D) $\cot 2 \theta$

Q2. The remainder theorem when $P(x)=x^{3}-2 x^{2}-4 x+7$ is divided by $2 x+3$ is:
A) 4
B) $\frac{41}{8}$
C) $-\frac{1}{8}$
D) -26

Q3. The point $P(2,2)$ divides the interval joining $A(-2,-4)$ and $B\left(x_{2}, y_{2}\right)$ in the ratio $2: 1$. The coordinates of B are?
A) $(4,5)$
B) $(6,8)$
C) $(0,-1)$
D) $(10,14)$

Q4. The term independent of x in the expansion $\left(x+\frac{3}{x}\right)^{4}$ is?
A) 3
B) 6
C) 18
D) 54

Manly Selective Campus
 2014 HSC Mathematics Extension 1-Trial Examination

Q5. A particle is moving along a straight line. The displacement of the particle from a fixed point O is given by x. The graphs below show acceleration against displacement.

Which of the graphs below best represents a particle moving in simple harmonic motion?
(A)

(B)

(C)

(D)

Q6. The definite integral $\int_{e}^{e^{2}} \frac{2}{x\left(\log _{e} x\right)^{2}} d x$ is evaluated using the substitution $u=\log _{e} x$.

The value of the integral is?
A) $2\left(\frac{1}{e}-\frac{1}{e^{2}}\right)$
B) $2\left(\frac{1}{e^{2}}-\frac{1}{e}\right)$
C) $\quad-1$
D) 1

Manly Selective Campus
 2014 HSC Mathematics Extension 1-Trial Examination

Q7. The function shown in the diagram below has the equation $y=A \sin ^{-1} B x$. Which of the following is true?

(A) $\quad A=1, B=\frac{1}{2}$
(B) $A=-1, B=2$
(C) $A=\frac{-2}{\pi}, B=\frac{1}{2}$
(D) $\quad A=\frac{2}{\pi}, B=2$

Q8. Three English books, four Mathematics books and five Science books are randomly placed along a bookshelf. What is the probability that the Mathematics books are all next to each other?
A) $\frac{1}{3!5!}$
B) $\frac{4!9!}{12!}$
C) $\frac{4!3!5!}{12!}$
D) $\frac{4!}{9!}$

Q9. A, B, C and D are points on a circle. The line l is tangent to the circle at C. $\angle A C E=\theta$.

What is $\angle A D C$ in terms of θ ?
A) $90^{\circ}-\theta$
B) $180^{\circ}-\theta$
C) $180^{\circ}-2 \theta$
D) θ

Q10. What is the indefinite integral for $\int\left(\cos ^{2} x+\sec ^{2} x\right) d x$?
A) $\frac{1}{2} x+\frac{1}{4} \sin 2 x+\frac{1}{2} \tan x+c$
B) $\frac{1}{2} x-\frac{1}{4} \sin 2 x+\frac{1}{2} \tan x+c$
C) $\frac{1}{2} x+\frac{1}{4} \sin 2 x+\tan x+c$
D) $\frac{1}{2} x-\frac{1}{4} \sin 2 x+\tan x+c$

Free response questions - answer each question in a separate Booklet

Question 11: Start a new Booklet
a) Solve $\left(\frac{x+3}{x^{2}-1}\right) \leq 0$
b) A container ship brings a total of 1200 cars into Australia. Of these cars, three hundred have defective brakes.

A total of five hundred cars are unloaded at Sydney.

Find an expression for the probability that one hundred of the cars unloaded at Sydney have defective brakes.
(NOTE: You don't need to simplify or evaluate the expression).
c) How many times must a die be rolled so that the probability of at least one six exceeds 0.5 ?
d) Line A is defined by the equation $y=2 x+1$.

Line B is defined by the equation $y=m x+b$

If the acute angle between the two is 45 degrees, what are the possible values of m ?

Question 11: continued on next page

Manly Selective Campus
 2014 HSC Mathematics Extension 1-Trial Examination

Question11: continued.

e) In the diagram above the point R is the fourth vertex of the rectangle $P O Q R$. The points P and Q move such that $\angle P O Q=90^{\circ}$.
(i) Show that $s t=-4$
(ii) Find the locus of the point R
f) Find the general solution of the equation:

$$
\sin \theta \cos \theta=\frac{1}{2}
$$

g) The diagram shown below shows a circle and $A B$ is a chord of length 6 cm . The tangent to the circle at P meets $A B$ produced at $X . P X=4 \mathrm{~cm}$. Find the length of $B X$.

Manly Selective Campus
 2014 HSC Mathematics Extension 1-Trial Examination

Question 12: Start a new Booklet
15marks
a) (i) Show that a zero of the function

$$
f(x)=\log _{e} x-\frac{1}{x}
$$

lies between $x=1$ and $x=2$.
(ii) Use one application of Newton's Method with an initial approximation of $x=1.5$ to obtain an improved estimate to the solution of the equation:

$$
\log _{e} x-\frac{1}{x}=0 .
$$

(State your answer to one decimal place.)
b) The rate of change of the temperature T of a cool item placed in a hot environment is determined by the equation.

$$
\frac{d T}{d t}=k(S-T)
$$

where k is a constant and T is the temperature of the object, and S is the temperature of the environment.
(i) Show that $T=S-A e^{-k t}$ is a solution to the differential equation:

$$
\frac{d T}{d t}=k(S-T)
$$

Jamie is cooking a large roast in an oven set to $160^{\circ} \mathrm{C}$. The roast will be cooked when the thermometer shows that the temperature of the centre of the roast is $150^{\circ} \mathrm{C}$. When Jamie started cooking, the temperature of the centre of the roast was $4^{\circ} \mathrm{C}$ and 30 minutes later it was $60^{\circ} \mathrm{C}$.
(ii) How long will it take for the roast to be cooked?

Question 12 continued on next page

Manly Selective Campus
 2014 HSC Mathematics Extension 1-Trial Examination

Question 12 continued

c) (i) Show that $\frac{1}{(n+1)!}-\frac{n+1}{(n+2)!}=\frac{1}{(n+2)!}$
(ii) Use mathematical induction to show that, for all integers $n \geq 1$,

$$
\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+\ldots \ldots \ldots .+\frac{n}{(n+1)!}=1-\frac{1}{(n+1)!}
$$

d) Given the function $f(x)=\frac{x^{2}-1}{x^{3}-8}$
$\begin{array}{llr}\text { (i) } & \text { State the vertical asymptote. } & \mathbf{1} \\ \text { (ii) } & \text { Sketch the graph of the function. Clearly show on your diagram } & \\ \text { the } x \text { - intercepts. } & \mathbf{3}\end{array}$
a) Find $\int e^{x+e^{x}} d x$ using the substitution $u=e^{x}$
b) A particle is moving in a straight line. At time t seconds it has displacement x metres from a fixed point O on the line. The velocity is given by

$$
\dot{x}=-\frac{1}{8} x^{3}
$$

The acceleration of the particle is given by \ddot{x}. The particle is initially 2 metres to the right of O.
(i) Show that $\ddot{x}=\frac{3}{64} x^{5}$
(ii) Find an expression for x in terms of t
c) The letters of the word INTEGRAL are arranged in a row. Calculate the probability that there are three letters between the letters " \mathbf{N} ' and " \mathbf{T} ".

Question 13 continued on next page

Manly Selective Campus
 2014 HSC Mathematics Extension 1-Trial Examination

Question 13 continued

d) During the medieval wars, the enemy wanted to attack a fortress with a 5 metre opening along a front wall. The strategy was to stand at the point P , on a line 8 metres from the opening and perpendicular to the wall, as per the diagram. The archer stands x metres away from the wall, thus giving an angle of vision, α, through which to fire arrows from a cross-bow.

(i) Show that the angle of vision α is given by

$$
\begin{equation*}
\alpha=\tan ^{-1}\left(\frac{13}{x}\right)-\tan ^{-1}\left(\frac{8}{x}\right) \tag{1}
\end{equation*}
$$

(ii) Determine the distance x which gives the maximum angle of vision α.
a) Let α, β, γ be the roots of $P(x)=2 x^{3}-5 x^{2}+3 x-5$.

Find the value of $\frac{1}{\alpha^{2}}+\frac{1}{\beta^{2}}+\frac{1}{\gamma^{2}}$
b) Let $(3+2 x)^{20}=\sum_{r=0}^{20} a_{r} x^{r}$
(i) Write down an expression for a_{r}
(ii) Show that $\frac{a_{r+1}}{a_{r}}=\frac{40-2 r}{3 r+3}$
(iii) Find the value of r which produces the greatest coefficient in the expansion of $(3+2 x)^{20}$
c) A particle is moving in a straight line in simple harmonic motion. At time t it has displacement x metres from a fixed point O on the line where

$$
x=(\cos t+\sin t)^{2}
$$

At time t, the velocity of the particle is $\dot{x} m s^{-1}$ and the acceleration is $\ddot{x} m s^{-2}$
(i) Show that $\ddot{x}=-4(x-1) \quad 2$
(ii) Find the extreme positions of the particle during its motion.

Question 14 continued on next page.

Question 14continued

d) (i) Show that:

$$
\begin{equation*}
(1-x)^{n}\left(1+\frac{1}{x}\right)^{n}=\left(\frac{1-x^{2}}{x}\right)^{n} \tag{1}
\end{equation*}
$$

(ii) By considering the expansion of $(1-x)^{n}\left(1+\frac{1}{x}\right)^{n}$ or otherwise, express

$$
\binom{n}{2}\binom{n}{0}-\binom{n}{3}\binom{n}{1}+\ldots+(-1)^{n}\binom{n}{n}\binom{n}{n-2}
$$

in simplest form.

This page has been left blank.

Manly Selective Campus

2014 HSC Mathematics Extension 1 - Trial Examination

STANDARD INTEGRALS

$$
\text { NOTE : } \ln x=\log _{e} x, \quad x>0
$$

$$
\begin{aligned}
& \int x^{n} d x \quad=\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0, \text { if } n<0 \\
& \int \frac{1}{x} d x \quad=\ln x, x>0 \\
& \int e^{a x} d x \quad=\frac{1}{a} e^{a x}, a \neq 0 \\
& \int \cos a x d x \quad=\frac{1}{a} \sin a x, \quad a \neq 0 \\
& \int \sin a x d x \quad=-\frac{1}{a} \cos a x, \quad a \neq 0 \\
& \int \sec ^{2} a x d x \quad=\frac{1}{a} \tan a x, \quad a \neq 0 \\
& \int \sec a x \tan a x d x=\frac{1}{a} \sec a x, \quad a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x \quad=\frac{1}{a} \tan ^{-1} \frac{x}{a}, \quad a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x \quad=\sin ^{-1} \frac{x}{a}, \quad a>0, \quad-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}+a^{2}}\right)
\end{aligned}
$$

Q1	$\begin{aligned} & \text { Let } t=\tan \theta \\ & \text { then } \begin{aligned} \frac{2 \tan \theta}{1+\tan ^{2} \theta} & =\frac{2 t}{1+t^{2}} \\ & =\sin 2 \theta \end{aligned} \end{aligned}$	B
Q2	$\begin{aligned} x & =-\frac{3}{2} \\ \left(-\frac{3}{2}\right)^{3}-2 \times\left(-\frac{3}{2}\right)^{2}-4 \times\left(-\frac{3}{2}\right)+7 & =\frac{41}{8} \end{aligned}$	B
Q3	$\frac{1(-2)+2 x}{2+1}=2 \Rightarrow x=4$ $\frac{1(-4)+2 y}{2+1}=2 \Rightarrow y=5$	A
Q4	$\begin{aligned} T_{k+1} & ={ }^{4} C_{k} x^{4-k}\left(\frac{3}{x}\right)^{k} \\ & ={ }^{4} C_{k} x^{4-k}\left(3^{k} x^{-k}\right) \\ & ={ }^{4} C_{k} 3^{k} x^{4-2 k} \end{aligned}$ independent of $x \Rightarrow 4-2 k=0$ $k=2$ the termis ${ }^{4} C_{2} \times 3^{2}=54$	D
Q5	For simple harmonic motion $\ddot{x}=-n^{2} x$	A

Q6		D
Q7	$A=\frac{-2}{\pi}$ Domain is $D:-1 \leq B x \leq 1$ $\begin{aligned} & -\frac{1}{B} \leq x \leq \frac{1}{B} \\ & \therefore \frac{1}{B}=2 \\ & B=\frac{1}{2} \end{aligned}$	C
Q8	$\frac{4!9!}{12!}$	B
Q9	$180^{\circ}-\theta$	B
Q10	$\frac{1}{2} x+\frac{1}{4} \sin 2 x+\tan x+c$	C

Q11

$\begin{gathered} \text { Q11 } \\ -\mathrm{a} \end{gathered}$	$\begin{aligned} \left(\frac{x+3}{x^{2}-1}\right) & \leq 0 \quad n b x \neq \pm 1 \\ \left(\frac{x+3}{x^{2}-1}\right)\left(x^{2}-1\right)^{2} & \leq 0 \times\left(x^{2}-1\right)^{2} \\ (x+3)\left(x^{2}-1\right) & \leq 0 \\ (x+3)(x-1)(x+1) & \leq 0 \end{aligned}$ therefore $x \leq-3$ or $-1<x<1$	2 marks: correct solution 1 mark: $x \neq 1 \text { or }-1 \text { and }(x+3)\left(x^{2}-1\right) \leq 0$
Q11	$\begin{aligned} & P_{\text {ifective }}=p=\frac{1}{4} \\ & P_{\text {non-defective }}=q=\frac{3}{4} \\ &(p+q)^{500} \\ & 100 \text { defective }={ }^{500} \mathbf{C}_{400} p^{100} q^{400} \\ &={ }^{500} \mathbf{C}_{400}\left(\frac{1}{4}\right)^{100}\left(\frac{3}{4}\right)^{400} \end{aligned}$	2 marks: correct solution 1 mark: $p=\frac{1}{4}, q=\frac{3}{4}$ and considering $(p+q)^{500}$

Q11-c	$\begin{aligned} p_{6} & =\frac{1}{6} \quad q_{n o t 6}=\frac{5}{6} \\ \therefore \quad p_{n o 6 \cdot s} & =\left(\frac{5}{6}\right)^{n} \\ \therefore 1-\left(\frac{5}{6}\right)^{n} & >0 \cdot 5 \\ 0 \cdot 5 & >\left(\frac{5}{6}\right)^{n} \\ \ln (0 \cdot 5) & >n \ln \left(\frac{5}{6}\right) \\ \frac{\ln (0 \cdot 5)}{\ln \left(\frac{5}{6}\right)} & <n \\ \therefore \quad 3 \cdot 8 & <x \\ \therefore \quad n & =4 \end{aligned}$ Therefore 4 throws of dice required.	2 marks: correct solution 1 mark: $1-\left(\frac{5}{6}\right)^{n}>0.5$ Or bald correct answer Note: many students failed to recognise that $\ln \left(\frac{5}{6}\right)$ is negative requiring inequality sign to be reversed
Q11-d	$\begin{array}{rlrl} y & =2 x+1 & m_{1}=2 & m_{2}=m \\ \tan \theta & =\left\|\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}\right\| & \\ 1 & =\left\|\frac{2-m}{1+2 m}\right\| & & \\ -1 & =\frac{2-m}{1+2 m} & & 1=\frac{2-m}{1+2 m} \\ -2 m-1 & =2-m & & 1+2 m=2-m \\ m & =-3 & & m=\frac{1}{3} \end{array}$	2 marks: correct solution 1 mark: correct formula

Q11-e-i	$\begin{aligned} s t & =-4 \\ m_{\mathrm{OQ}} & =\frac{a s^{2}}{2 a s}=\frac{s}{2} \\ m_{\mathrm{OP}} & =\frac{a t^{2}}{2 a t}=\frac{t}{2} \\ m_{\mathrm{OQ}} \times m_{\mathrm{OP}} & =-1 \\ \frac{s}{2} \times \frac{t}{2} & =-1 \\ \therefore \quad s t & =-4 \end{aligned}$	1 mark: correct demonstration
Q11-e-ii	$Q\left(2 a s, a s^{2}\right) P\left(2 a t, a t^{2}\right)$ As shape is a rectangle $\begin{aligned} & R=\left(2 a s+2 a t, a s^{2}+a t^{2}\right) \\ & x=2 a(s+t) \quad y=a\left(s^{2}+t^{2}\right) \\ & \frac{x}{2 a}=(s+t) \\ &(s+t)^{2}=s^{2}+2 s t+t^{2} \\ &(s+t)^{2}-2 s t=s^{2}+t^{2} \\ & \frac{x^{2}}{4 a^{2}}-2(-4)=s^{2}+t^{2} \\ & \therefore \quad \\ & y=a\left(\frac{x^{2}}{4 a^{2}}+8\right) \\ & y=\frac{x^{2}}{4 a}+8 a \\ & 4 a y=x^{2}+32 a^{2} \\ & x^{2}=4 a(y-8 a) \end{aligned}$	2 marks: correct demonstration 1 mark: applying $(s+t)^{2}=s^{2}+2 s t+t^{2}$ Note: too many students were unable to write down coords of R , but wasted time deriving them
Q11-f	$\begin{aligned} \sin \theta \cos \theta & =\frac{1}{2} \\ \therefore 2 \sin \theta \cos \theta & =1 \\ \sin 2 \theta & =1 \\ 2 \theta & =\frac{\pi}{2}+2 n \pi \\ \theta & =\frac{\pi}{4}+n \pi \end{aligned}$	2 marks :correct solution 1 mark: correct base value

Q11-g	$\begin{aligned} \mathrm{XB} \cdot \mathrm{AX} & =\mathrm{XP}^{2} \\ (6+x) x & =16 \\ x^{2}+6 x-16 & =0 \\ (x+8)(x-2) & =0 \\ x & =-8 \text { or } 2 \\ \therefore \quad x & =2 \text { distance } \end{aligned}$	2 marks: correct solution 1 mark: correct equation $(6+x) x=16$
Q12		
Q12-a-i	$\begin{aligned} & f(x)=\log _{e} x-\frac{1}{x} \\ & f(1)=\log _{e} 1-\frac{1}{1}=0-1=n e g \\ & f(2)=\log _{e} 2-\frac{1}{2}=0 \cdot 19=\text { pos } \end{aligned}$ Therefore at least one root must lie between 1 and 2 as graph moves from negative to positive.	1 mark - correct explanation based on correct values calculated.
Q12-a-i	$\begin{aligned} f(x) & =\log _{e} x-\frac{1}{x} \\ f^{\prime}(x) & =\frac{1}{x}+\frac{1}{x^{2}}=\frac{x+1}{x^{2}} \\ a_{2} & =a_{1}-\frac{f(x)}{f^{\prime}(x)} \\ & =1.5-\frac{\log _{e} 1.5-\frac{1}{1.5}}{\frac{1.5+1}{(1.5)^{2}}} \\ & =1.735 \end{aligned}$	2 marks - correct solution 1 mark - correct substitution into correct formula
Q12b-i	Version 1 $\begin{array}{rlrl} T & =S-A e^{-k t} & & \\ \frac{d T}{d t} & =k A e^{-k t} & & \text { Verision } 2 \\ & & =k S-k S+k A e^{-k t} & \\ & & T & =S-A e^{-k t} \\ & & =-k(-S(-S+T) & \tag{1}\\ & & \therefore A e^{-k t}=S-T \end{array}$	1 mark - fully explained in explanation of substitution

q12b-ii	$T=S-A e^{-k t}$ $\begin{aligned} \text { at } t & =0 \quad T=4 \\ 4 & =160-A e^{0} \\ A & =156 \end{aligned}$ $\begin{aligned} a t t & =30 \quad T=60 \\ 60 & =160-156 e^{-30 k} \\ e^{-30 k} & =\frac{100}{156} \\ -30 k & =\ln \frac{100}{156} \\ k & =\ln \frac{100}{156} \div-30=0 \cdot 014823 \\ 150 & =160-156 e^{-k t} \\ e^{-k t} & =\frac{10}{156} \\ t & =\ln \frac{10}{156} \div-k \\ & =\ln \frac{10}{156} \div\left(-\ln \frac{100}{156} \div-30\right) \\ & =185 \min 20 \sec \end{aligned}$	$\begin{aligned} & 3 \text { marks - correct } \\ & \text { solution } \\ & 2 \text { marks - correct } \\ & \text { value for } k \\ & 1 \text { mark - correct to } \\ & \text { line (1) } \end{aligned}$
Q12-c	$\begin{aligned} & \frac{1}{(n+1)!}-\frac{n+1}{(n+2)!} \\ & =\frac{1}{(n+1)!}-\frac{n+1}{(n+2)(n+1)!} \\ & =\frac{n+2}{(n+2)(n+1)!}-\frac{n+1}{(n+2)!} \\ & =\frac{(n+2)-(n+1)}{(n+2)!} \\ & =\frac{1}{(n+2)!} \end{aligned}$	$\begin{aligned} & 1 \text { mark - correct } \\ & \text { solution } \end{aligned}$

Q13

Q13-a	$\begin{aligned} \int & e^{x+e^{x}} d x \\ & =e^{x} \quad d u=e^{x} d x \\ & =\int e^{x} \times e^{e^{x}} d x \\ & =\int e^{u} d u \\ & =e^{u}+C \\ & =e^{e^{x}}+C \end{aligned}$	3 marks - correct solution 2 marks - for correct expression $\int e^{u} d u=e^{u}+C$ 1 mark for $e^{x+e^{x}}=e^{x} \cdot e^{e^{x}}$
Q13b-i	$\begin{aligned} \dot{x} & =-\frac{1}{8} x^{3}=v \\ \therefore \frac{1}{2} v^{2} & =-\frac{1}{128} x^{6} \\ \ddot{x} & =\frac{d\left(\frac{1}{2} v^{2}\right)}{d x}=\frac{6}{128} x^{5} \\ & =\frac{3}{64} x^{5} \end{aligned}$	2 marks for correct solution. 1 mark for $\frac{1}{2} v^{2}=\frac{1}{128} x^{6}$

Q13b-ii	$\begin{aligned} \dot{x} & =-\frac{1}{8} x^{3} \\ \frac{d x}{d t} & =-\frac{1}{8} x^{3} \\ \therefore \quad \frac{d t}{d x} & =-\frac{8}{x^{3}}=-8 x^{-3} \\ t & =\int-8 x^{-3} d x=\frac{-8 x^{-2}}{-2} \\ t & =\frac{4}{x^{2}}+C \\ a t t & =0 \\ 0 & =\frac{4}{4}+C \\ \therefore \quad C & =-1 \\ t & =\frac{4}{x^{2}}-1 \\ t+1 & =\frac{4}{x^{2}} \\ x^{2} & =\frac{4}{t+1} \\ x & =\sqrt{\frac{4}{t+1}} \end{aligned}$ Note; Positive answer only to agree original conditions	3 marks for correct solution 2 marks $-t=\frac{4}{x^{2}}+C$ and $C=-1$ $-t=\frac{4}{x^{2}}+C$ and correct primitive from incorrect value for C 1 mark $-t=\frac{4}{x^{2}}$
Q13c	INTEGRAL Total Number of arrangements $=8$! $\begin{aligned} \text { Number of restricted arrangements } & =4 \times 2!\times 6! \\ \qquad \operatorname{Prob} & =\frac{4 \times 2!\times 6!}{8!}=\frac{1}{7} \end{aligned}$	3 marks - correct solution 2 marks - for $n(S)=8!$ and any two correct of 4 or 2 ! or 6 ! 1 mark -8! -any two of 4 or 2 ! or 6 !

Q13-d	$\begin{aligned} \alpha & =\tan ^{-1}\left(\frac{13}{x}\right)-\tan ^{-1}\left(\frac{8}{x}\right) \\ \alpha & =\angle Q P S-\angle Q P R \\ \tan (\angle Q P R) & =\frac{8}{x} \quad \tan (\angle Q P S)=\frac{13}{x} \\ \angle Q P R & =\tan ^{-1} \frac{8}{x} \angle Q P S=\tan ^{-1} \frac{13}{x} \\ \therefore \quad \alpha & =\tan ^{-1}\left(\frac{13}{x}\right)-\tan ^{-1}\left(\frac{8}{x}\right) \end{aligned}$	1 mark for correct solution
Q13-d-ii	$\begin{aligned} & \alpha=\tan ^{-1}\left(\frac{13}{x}\right)-\tan ^{-1}\left(\frac{8}{x}\right) \\ & \frac{d \alpha}{d x}=-\frac{13}{x^{2}}\left(\frac{1}{1+\left(\frac{13}{x}\right)^{2}}\right)+\frac{8}{x^{2}}\left(\frac{1}{1+\left(\frac{8}{x}\right)^{2}}\right) \\ & \therefore a t \frac{d \alpha}{d x}=0 \\ & \frac{13}{x^{2}\left(\frac{1}{1+\left(\frac{13}{x}\right)^{2}}\right)}=\frac{8}{x^{2}}\left(\frac{1}{1+\left(\frac{8}{x}\right)^{2}}\right) \\ & \frac{8 x^{2}}{x^{2}+64}=\frac{13 x^{2}}{x^{2}+169} \\ & 8\left(x^{2}+169\right)=13\left(x^{2}+64\right) \\ & x^{2}=\frac{520}{5} \\ & x=\sqrt{104} \end{aligned}$ Test for maximum $\begin{aligned} & x=10 \quad \frac{d \alpha}{d x}=-\frac{13}{100}\left(\frac{1}{1+\left(\frac{13}{10}\right)^{2}}\right)+\frac{8}{100}\left(\frac{1}{1+\left(\frac{8}{10}\right)^{2}}\right)=0.0004 \\ & x=10 \cdot 2 \quad \frac{d \alpha}{d x}=-0 \cdot 000004 \end{aligned}$ Therefore change in gradient positive, zero to negative therefore maximum.	3 marks - correct solution 2 marks - $x=\sqrt{104}$ 1 mark - correct for $\frac{d \alpha}{d x}$ - value of x correctly obtained from incorrect $\frac{d \alpha}{d x}$

Q14-a	$\begin{gathered} \alpha+\beta+\gamma=-\frac{b}{a}=\frac{5}{2} \\ \alpha \beta+\alpha \gamma+\beta \gamma=\frac{c}{a}=\frac{3}{2} \\ \alpha \beta \gamma=-\frac{d}{a}=\frac{5}{2} \\ \frac{1}{\alpha^{2}}+\frac{1}{\beta^{2}}+\frac{1}{\gamma^{2}}=\frac{\beta^{2} \gamma^{2}+\alpha^{2} \gamma^{2}+\alpha^{2} \beta^{2}}{\alpha^{2} \beta^{2} \gamma^{2}} \\ (\alpha \beta+\alpha \gamma+\beta \gamma)^{2} \\ =\alpha^{2} \beta^{2}+\alpha^{2} \gamma^{2}+\beta^{2} \gamma^{2}+2\left(\alpha^{2} \beta \gamma+\alpha \beta^{2} \gamma+\alpha \beta \gamma^{2}\right) \\ =\alpha^{2} \beta^{2}+\alpha^{2} \gamma^{2}+\beta^{2} \gamma^{2}+2 \alpha \beta \gamma(\alpha+\beta+\gamma) \\ \therefore \quad\left(\frac{3}{2}\right)^{2}=\alpha^{2} \beta^{2}+\alpha^{2} \gamma^{2}+\beta^{2} \gamma^{2}+2 \times \frac{5}{2} \times \frac{5}{2} \\ \frac{9}{4}-\frac{25}{2}=\alpha^{2} \beta^{2}+\alpha^{2} \gamma^{2}+\beta^{2} \gamma^{2} \\ \frac{\beta^{2} \gamma^{2}+\alpha^{2} \gamma^{2}+\alpha^{2} \beta^{2}}{\alpha^{2} \beta^{2} \gamma^{2}}=\left(-\frac{41}{4}\right) \div \frac{25}{4}=-\frac{41}{25} \\ \hline \end{gathered}$	3 marks: correct solution 2 marks : partial correct with a least 2 values of ratios of coefficients correct with correct required expansion 1 mark: at least two ratios correct only Or 1 mark: correct required expansion only
	$\begin{aligned} & (3+2 x)^{20} \\ & \therefore x^{r} \text { term }={ }^{20} \mathbf{C}_{r} 3^{20-r} \cdot(2 x)^{r} \\ & \quad a_{r}={ }^{20} \mathbf{C}_{r} 3^{20-r} \cdot(2)^{r} \end{aligned}$	1 mark: correct solution

	$\begin{aligned} a_{r} & ={ }^{20} \mathbf{C}_{r} 3^{20-r} \cdot(2)^{r} \\ a_{r+1} & ={ }^{20} \mathbf{C}_{r+1} 3^{19-r} \cdot(2)^{r+1} \\ \frac{a_{r+1}}{a_{r}} & =\frac{{ }^{20} \mathbf{C}_{r+1} 3^{19-r} \cdot(2)^{r+1}}{{ }^{20} \mathbf{C}_{r} 3^{20-r} \cdot(2)^{r}} \\ & =\frac{20!\times 3^{19-r} \cdot(2)^{r+1}}{(19-r)!(r+1)!} \times \frac{(20-r)!r!}{20!\times 3^{20-r} \cdot(2)^{r}} \\ & =\frac{2(20-r)}{3(r+1)} \\ & =\frac{40-2 r}{3 r+3} \end{aligned}$	2 marks: correct solution 1 mark: partial correct with both terms correct
	$\begin{array}{rlrl} \begin{array}{rl} 40-2 r & 3 r+3 \end{array} & \leq 1 \\ 40-2 r & \leq 3 r+3 \\ 37 & \leq 5 r \\ 7 \cdot 4 & \leq r \\ & & & \\ \therefore & r & =8 & \\ r & =8 & & \\ r & =7 & { }^{20} \mathbf{C}_{8} 3^{12} \times 2^{8}=1.714 \times 10^{13} \\ \text { Test } r & =9 & { }^{20} \mathbf{C}_{7} 3^{13} \times 2^{7}=1.582 \times 10^{13} \\ \hline \end{array}$	1 mark: correct solution
14 c - i	$\begin{aligned} x & =(\cos t+\sin t)^{2}=\cos ^{2} t+2 \sin t \cos t+\sin ^{2} t \\ \therefore \quad x & =1+\sin 2 t \\ \ddot{x} & =2 \cos 2 t \\ \ddot{x} & =-4 \sin 2 t \\ & =-4(1+\sin 2 t-1) \\ & =-4(x-1) \end{aligned}$	2 marks: corrcet solution 1 mark: correct expression for velocity
14c-ii	$\begin{aligned} x & =1+\sin 2 t \\ -1 & \leq \sin 2 t \leq 1 \\ 0 & \leq 1+\sin 2 t \leq 2 \\ 0 & \leq x \leq 2 \end{aligned}$ therefore extremes of position are $x=0$ and $x=2$	2 marks: correct solution 1 mark: only one correct extreme

$14 \mathrm{~d}-\mathrm{i}$	$(1-x)^{n}\left(1+\frac{1}{x}\right)^{n}$ $=\left[(1-x)\left(1+\frac{1}{x}\right)\right]^{n}$ $=\left[1+\frac{1}{x}-x-1\right]^{n}$ $=\left(\frac{1}{x}-x\right)^{n}$ $=\left[\frac{1-x^{2}}{x}\right]^{n}$	

14d-ii	Determine the coefficient of x^{2} on both sides of the equation. $\begin{aligned} \text { RHS } & =(1-x)^{n}\left(1+\frac{1}{x}\right)^{n} \\ & =\left[\sum_{k=0}^{n}(-1)^{k}{ }^{n} \mathbf{C}_{k} x^{k}\right]\left[\sum_{k=0}^{n}{ }^{n} \mathbf{C}_{k} x^{-k}\right] \end{aligned}$ \therefore coefficient of x^{2} $\begin{aligned} &\binom{n}{2}\binom{n}{0}-\binom{n}{3}\binom{n}{1}+\ldots+(-1)^{n}\binom{n}{n}\binom{n}{n-2} \\ & \begin{aligned} \text { LHS } & =\left(\frac{1-x^{2}}{x}\right)^{n}=\left(\frac{1}{x}-x\right)^{n} \\ & =\sum_{k=0}^{n}(-1)^{k}\binom{n}{k} x^{-(n-k)} x^{k} \\ & =\sum_{k=0}^{n}(-1)^{k}\binom{n}{k} x^{2 k-n} \end{aligned} \end{aligned}$ \therefore coefficient of $x^{2} a t$ $\begin{aligned} 2 k-n & =2 \\ k & =1+\frac{n}{2} \end{aligned}$ If n is odd, then k is not an integer therefore cannot exist. therefore $\binom{n}{2}\binom{n}{0}-\binom{n}{3}\binom{n}{1}+\ldots+(-1)^{n}\binom{n}{n}\binom{n}{n-2}=0$ If n is even then $(-1)^{1+\frac{n}{2}}\binom{n}{1+\frac{n}{2}}$ is coefficient of x^{2} therefore $\binom{n}{2}\binom{n}{0}-\binom{n}{3}\binom{n}{1}+\ldots+(-1)^{n}\binom{n}{n}\binom{n}{n-2}=(-1)^{1+\frac{n}{2}}\binom{n}{1+\frac{n}{2}}$	3 marks : correct solution 2 marks: partial correct with significant progress to equating coefficients of squared term 1 mark: one expression for the squared term correct

